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Abstract – 
Modular construction is becoming a viable 

construction method in North America due to its 
support of the concept of circular construction and its 
inherent ability to provide a faster return on 
investment. The process of modular construction 
manufacturing (MCM) operates as a production line, 
where the number of module components (e.g., wall, 
roof, and floor panels) with different design 
specifications and their sequence (i.e., order of 
prefabricating these module components) dictates the 
productivity of the production line. This variation in 
design specifications and impractical sequences of 
module components leads to imbalanced production 
lines and prolonged makespan (i.e., total completion 
time) of prefabricating module components at 
workstations. To address these challenges, this paper 
proposes a method that utilizes deep neural network 
and genetic algorithm (GA) techniques to solve the 
modular construction manufacturing scheduling 
problem (MCMSP). The method consists of two 
processes: (i) developing a deep neural network model 
based on the historical time data and later 
hyperparameter tuning using a GA in order to select 
the optimal neural network configurations; and (ii) 
subsequently using the predicted process times as 
input in the optimization model in order to schedule 
the sequences of module components (e.g., wall 
panels). The proposed method is implemented in a 
wood-based wall panel production line of a modular 
fabricator in Edmonton, Canada. This developed 
method can assist production managers in efficiently 
forecasting process times and developing production 
line schedules. 
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1. Introduction and Background
Modular construction is a process where module

components (e.g., wall, roof, and floor panels) are 
prefabricated in a controlled factory environment and 
later transported on-site to be installed as building blocks. 
Modular construction is increasingly growing in 
popularity over conventional construction, given its 
potential to achieve shortened construction schedules and 
less material waste, facilitate the process of circular 
construction and lead to a quicker return on investment 
for project owners [1] and [2]. However, prefabricating 
modules has been a very complex manufacturing process 
due to the highly customized nature of module 
components (i.e., variation in design specifications), 
leading to varying production rates and imbalanced 
production lines. Therefore, this process makes it 
challenging for production line managers to develop a 
robust production planning and scheduling model 
without accurately forecasting the process times of 
module components at workstations along the production 
line. 

In modular construction manufacturing (MCM), the 
processing time is defined as the time taken (i.e., start and 
finish time) to complete one module component (e.g., 
wall panel) at the workstation [3]. Accurately predicting 
the process times can be seen as a way of: (i) gaining an 
in-depth understanding of the nature of module 
components; and (ii) making data-driven decisions with 
respect to the planning and scheduling of module 
components in the production line. However, the 
modular construction industry has not achieved its full 
potential benefits due to the lack of a systematic, data-
driven decision-making approach in order to solve the 
modular construction manufacturing scheduling problem 
(MCMSP). In practice, production managers make 
guesswork based on their experience and rely on the 
average process times. However, such methods do not 
provide optimal results due to the stochastic nature (i.e., 
randomness) of prefabricating module components at 
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workstations. In this respect, this paper proposes a 
method combining deep neural networks and GA to 
develop a model to solve MCMSP efficiently. The 
proposed method encompasses; (i) data preprocessing 
(e.g., outlier's removal) in order to clean RFID-based 
production line data for prediction purposes; (ii) 
development of predictive models using the deep neural 
network; (iii) identification of optimal model 
configuration for the deep neural network using GA 
optimization; and (iv) development of a scheduling 
model using GA based optimization technique 
facilitating the data-driven production line schedules. 

2. Literature Review
This section provides a literature review from three 
perspectives: (i) Data analytics; (ii) Scheduling in MCM; 
and (iii) optimization for production scheduling. 

2.1 Data Analytics 

Various machine learning and statistical techniques 
were employed to substantially enhance the accuracy of 
predictive models in construction and infrastructure 
engineering [4]. Artificial neural networks (ANN) are a 
more suitable tool for developing predictive models as 
they provide superior performance for highly uncertain, 
nonlinear, and complicated problems [5]. According to 
Moselhi et al. [6], ANN encompasses a collection of 
processing elements, usually organized into layers (i.e., 
input, hidden, and output layers). The input layer accepts 
the data (i.e., independent variables), which is used by the 
hidden layers to represent the relationship and the output 
layer produces the network response (i.e., dependent 
variable). To make reliable predictions, ANN has been 
extensively applied in the construction, infrastructure, 
and manufacturing industry. For example, 
Zangenehmadar and Moselhi [7] used ANN models to 
predict the remaining useful life of water pipes in 
Montreal. Critical factors such as pipe length, diameter, 
material, and breakage rate were considered to develop 
robust predictive models. Likewise, Golnaraghi et al. [8] 
applied the ANN technique, and on that basis, the labor 
productivity for performing formwork installation 
operations was predicted. Moon et al. [9] successfully 
implemented a multilayer perceptron artificial neural 
network to predict production and latency days for 
manufacturing production facilities. Although, some 
studies have advanced the development of forecasting 
process times at workstations along the production line 
in modular construction [10]. However, manual and 
GridSearchCV were used to find the optimal parameters 
for the machine learning algorithms. This approach is 
time-consuming and does not ensure optimal parameters. 
Therefore, various researchers have used GA for 

hyperparameter tuning for machine learning models in 
construction and infrastructure engineering. For instance, 
Assad and Bouferguene [11] used the GA algorithm in 
order to optimize the hyperparameter of various data 
mining techniques to accurately predict the water mains 
condition. Considering these characteristics of GA, the 
research presented in this paper seeks to implement GA 
to select the optimal neural network model 
configurations for predicting the process times of module 
components in the production line.   

2.2 Planning and Scheduling in Modular 
Construction Manufacturing 

Scheduling in the manufacturing industry is a 
decision-making process where the sequencing of jobs 
(i.e., module components) and allocation of resources is 
performed to achieve specific objectives (e.g., 
minimization of makespan). According to Piendo [12], 
the scheduling process can be stochastic or deterministic. 
Since the process times and release dates of the jobs in 
the production lines are not known with certainty in 
advance. The scheduling problem in MCM resembles the 
stochastic scheduling problem. Therefore, various 
researchers have implemented methods on lean 
manufacturing principles and simulation to enhance 
planning and scheduling in MCM. For example, Yu et al. 
[13] applied a lean-based approach in the modular
construction company's production line, improving labor
efficiency by 10 % and reducing labor costs by 18%. On
the other hand, Moghadam et al. [14] generated multiple
scenarios of production line schedules using discrete
event simulation. Later, these developed simulation
scenarios were integrated with a visualization model to
determine the best scenario for balancing the production
line. In general, lean and simulation have been applied
individually or integrated to develop plans and schedules;
thereby improving the performance of MCM. However,
there are the following issues: (i) a limited number of
scenarios were tested; therefore, not giving optimal
sequences of modules to be prefabricated in the
production line; (ii) does not account for decision
variables such as module design specifications in their
module sequencing arrangement.

2.3 Optimization for Production Scheduling 
Various researchers in industrial engineering have 

applied optimization techniques to solve scheduling 
problems (e.g., flow and job shop scheduling). For 
example, Chen et al. [15] proposed a GA-based method 
that developed schedules for a hybrid flow shop 
considering order arrivals in a dynamic manner. GA 
demonstrated its effectiveness by reducing job waiting 
time and meeting order deadlines. Meanwhile, An et al. 
[16] illustrated the application of GA in minimizing the



production time and cost for a metal-cutting production 
process. Similarly, optimized schedules were developed 
for modular and offsite construction. For instance, Hyun 
et al. [17] developed a multi-objective optimization 
model based on GA to reduce the duration and cost of 
modular construction production lines. Rashid and Louis 
[18] integrated GA and discrete event simulation in order
to minimize the total makespan (i.e., completion time) for
the modular construction production line by allocating an
optimal number of workers at each workstation. However,
these developed methods assumed the durations of
workstations on a production line as only triangular
distribution or determined duration based on number of
workers allocated to the activities. There is a lack of
scheduling methods that utilize the historical production
data while developing predictive models to be used as
input for scheduling the sequences of module
components in the production line. Although the
effectiveness of optimization algorithms depends on the
type of scheduling problem and objective, the positive
reviews of the GA algorithm (i.e., provides an effective
solution and good computing capabilities) lead to its
selection to solve MCMSP in this research.

3. Developed Method
Figure 1 presents the proposed method that combines

a deep neural network and genetic algorithm in order to 
solve the modular construction manufacturing 
scheduling problem (MCMSP). A modular fabricator 
company collected the historical time data using RFID-
based technology [19], consisting of an RFID printer, 
reader, antenna, and paper-based tags. A detailed 
discussion of the RFID system design and its application 
for data was reported in the paper of Sadiq et al. [3]. This 
research starts with extracting the process times and 
relevant attributes of module components (e.g., number 
of studs and doors) at each workstation from the RFID 
raw data file provided by the company. From the 
timestamps collected using the RFID system, the process 
times (i.e., the time required to complete one module 
competent at each workstation) is extracted based on 
Equation (1): 

Processing Time i, w = First Read Time i, w+1 - 
First Read Time i, w         (1)

where i = panel; w = workstation; w+1 = next 
workstation; last read and first read are from antenna 
description. 

In this respect, the next critical step was to perform 
data preprocessing to clean the data and ensure that the 
dataset was in the required format for prediction purposes. 
The first step of data preprocessing is to identify and 
remove any missing values. In addition, (i) data 
visualization techniques (i.e., pie charts) are applied in 
order to gain insights into the data, and (ii) data points 
that are above and below 'Mean ± 1.5 SD' are marked as 

possible statistical outliers. Another crucial preparation 
step is combining attributes with the same meaning (e.g., 
the number of single and large doors). Furthermore, 
normalization techniques are implemented using 
Equation (2) in order to reduce the sizes of independent 
variables and model computation time.  

𝑉 ′ = (𝑉 − 𝑚𝑖𝑛𝐴) / (𝑚𝑎𝑥𝐴 − 𝑚𝑖𝑛𝐴) (2)
where minA is the minimum value and maxA is the 
maximum value of the independent variable, A, and V 
represents the original value of A. 

The dataset, having been preprocessed, was divided 
into training (80%) and testing (20%) subsets. Based on 
the training subset, a deep neural network model, is 
developed. It should be noted that this study used a deep 
neural network due to its feature of having multiple 
processing layers, which can efficiently perform complex 
nonlinear transformations. Each layer entails several 
nodes representing the input, transfer, and output 
variables. In this paper, the rectifier activation function is 
selected, and the range searched for upper bound/lower 
bound is 3-10 for hidden layers and 6-100 for the number 
of nodes. The next critical step is to apply the cross-
validation technique in order to prevent overfitting and 
obtain a better evaluation of the predictive model. The 
present study adopts K-fold cross-validation for testing 
the performance of a model. The dataset is divided into 
K groups, where, in turn, the predictive model is trained 
using (K−1) groups, and the remaining fold is used to test 
the accuracy of the model. It should be noted that the 
parameters of the model (i.e., the number of hidden layers 
and nodes) have a significant impact on the model's 
performance. For instance, if there are a small number of 
nodes, the model cannot be trained well, and with a large 
number of nodes, performance can be enhanced, but a 
large number of connections will increase the 
computational time. Therefore, it is critical to establish 
parameters for neural networks which can be trained in 
reasonable computation time and provide errors within 
the tolerance limit. Therefore, hyperparameter tuning is 
performed, which is a process of identifying an optimum 
model configuration. This paper uses the GA 
optimization technique for hyperparameter tuning to 
minimize the model's prediction error (i.e., mean 
absolute error (MAE)). The procedure begins with 
initializing the population, representing a set of random 
solutions. The fitness of each solution is calculated, and 
the best solutions are then selected in the population 
using a tournament selection strategy. The selected 
solution is used to reproduce by undergoing the process 
of crossover and mutations. The process is repeated until 
optimization criteria are met. It should be noted that only 
MAE is selected as a measure of goodness of fit, which 
according to various studies is a better alternative to R 
square while evaluating the performance of model in 
respect to nonlinear data [20] and [21]. According to 



Lseth [20], utilization of R square for evaluating model 
performance in nonlinear data, leads to 
misinterpretations and produces misleading conclusions. 
Moreover, in the mathematical literature, it has been 
concluded that the R-square generally do not increase 
even for better nonlinear predictive models [21]. Later, 
the unseen data fit into the developed predictive model, 
and process times were predicted using the deployment 
function in the python library.  

The predictive process times of module components 
and the type and number of module components were 
used as input in the optimization model. As mentioned 
earlier, in a modular construction production line, the 
duration of each module component at each workstation 
changes according to its: (i) type and design specification 
(i.e., exterior/interior and number studs, door, and 
window) and (ii) procedure required to prefabricate (i.e., 
framing, nailing and cutting). At a given production line, 
the allocated module components are conducted in a 
cyclic manner (i.e., pre-defined sequence), and the 
process times of each workstation are a major variable. 
Therefore, the optimization problem can be defined as a 
combinatorial problem of the number of module 
components and process times. To solve the MCMSP, the 
following assumptions are considered: (i) Only module 
components affect the cycle time of the production line; 
and (ii) module components will be available in the 
inventory. The problem is modeled as an operation 
sequencing optimization problem, where J = {J1, J2…… 
Jm} is a set of ‘m’ number of module module components 
to be schedules and; P = {P1, P2…… Pw} is a set of 'w' 
number of workstations. Every module component in a 
modular construction production line needs to be 
prefabricated on several workstations in the pre-defined 
order (i.e., sequences), which is considered a non-
deterministic polynomial-time hard (NP-hard) problem. 
That means there are multiple sequences to schedule the 
module components at workstations, and with an increase 
in the number of combinations, the complexity of the 
problem (search space) increases, which makes it harder 
for the techniques to efficiently find the optimal 
sequences in a reasonable model runtime. The objective 
of the optimization problem is to find a near-optimal 
schedule (i.e., sequences of module components) in order 
to minimize the makespan (i.e., minimum time to 
complete all module components in the production line 
from start to end) [25] represented by equation 3:  

Min [Max (C1, w, C2,w,….. Cm,w)]  (3) 
Constraints: 

Sm + Di ≤ Si+1    (4) 

Max X m,w = 1 (5) 
The decision variables are the different sequences of 

module components in the production line. This 
optimization problem is subject to a set of constraints: (i) 
constraint 1 (equation 4) defines the production flow of 
module components, which ensures the module 
component 'm+1' at station w cannot start before the end 
of its predecessor module component 'm' at station 'w'; 
and (ii) constraint 2 (equation 5) represents the 
workstation capacity, which enforces each workstation 
'w' can process max of one module 'm' at a time. 

The primary component to develop the optimization 
model is GA, which optimizes the sequences of module 
components (i.e., order of module components) to be 
prefabricated at the workstations, which minimizes the 
makespan of the modular units. The critical elements of 
the GA algorithm are initialization, evaluation, selection, 
crossover, and mutation, which works as follows: (i) an 
initial population (i.e., comprised of chromosomes 
representing a list of module components) is generated 
randomly. In this research, we have used permutation 
encoding of modules (i.e., arranging the number of 
module components in different orders) as a chromosome 
where a primary module component will be assigned first, 
then the succeeding module component. For instance, a 
permutation [4,1,8,5,2,7,3,6] is a chromosome that 
represents a sequence where module component number 
4 gets prefabricated first on all the workstations followed 
by module component 1, 8, and so on; (ii) performing the 
process of evaluation, where fitness values of each 
chromosome are evaluated based on the optimization 
criteria (i.e., minimum makespan); (iii) The best 
chromosomes from the population is selected as the best 
solution (i.e., optimal sequences of module components) 
based on their fitness value. In this research, the selection 
process is performed using roulette wheel selection. It 
should be noted that the goal of the selection process is 
to save better and remove bad chromosomes; (iv) 
crossover and mutation are implemented in order to 
generate new chromosomes for the next generation. For 
each pair of parents to be mated, a crossover point is 
chosen using a two-point crossover, and the offspring 
exchanges the parents' genes among themselves until the 
crossover point. In the mutation process, to introduce 
variability and diversity, some of the genes in the 
offspring are flipped. This selection, crossover, and 
mutation process continues until the optimization criteria 
are met. 



Figure1. Research methodology

4. Case Study and Results
The proposed method was implemented on a wood-

frame wall panel production line operated by a modular 
fabricator in Edmonton, Canada. The wall panel 
production line consists of the following workstations: (i)
framing station where the wall components such as studs, 
tracks, and headers are fastened together to form a wall 
panel frame; (ii) sheathing station where drywall/sheets 
are installed on wall panels; (iii) multifunction bridge 
where drywalls/sheets are nailed (fixed) and moved to 
next workstation using transfer cart. It should be noted 
that interior multiwall panels are moved from the 
multifunction bridge and are cut at the transfer cart into 
single-wall panels, which are sent to the window bypass 
line to store them at the wall magazine line, whereas 
exterior wall panels are cut into single-wall panels and 
transferred to the window/door line or window bypass 
line; (iv) Window/Door installation lines, where 
windows/doors are installed on the wall panels and 
transferred to the storage area (i.e., wall magazine line). 
The wall panels are stored at the storage area as they 
await delivery to sites. Process times at workstations 

were collected by the modular fabricator company using 
an RFID system. The data in the 'RFID raw data' file for 
the workstations include the time between July 2015 and 
May 2017. As such, it contains (i) timestamps for each 
wall panel along with the workstations; and (ii) design 
factors of each wall panel (e.g., number of studs, number 
of windows, and length of wall panel). Considering this, 
the next critical step in the case study was to extract the 
process times of wall panels at the workstation using 
Equation (1). In addition, initial data analysis was 
performed in order to gain insights into the production 
line. Figure 2a shows a high level of variance in the 
process times at workstations due to the influence of the 
design factors (i.e., number of windows, panel length,
and number of studs). For example, at the sheathing 
station, the processing time of wall panel 3 was 9 minutes, 
wall panel 4 was 12 minutes, and wall panel 6 was 2 
minutes. This variation in process times affects the daily 
productivity of the workstations. Moreover, Figure 2b 
illustrates that the daily production on March 30 was 12 
panels at the sheathing station, 22 panels at the framing 
station, and 6 panels at the nailing station, respectively, 
causing an imbalanced production line.



Figure 2 (a): Process times of wall panels at workstations; and (b): Daily production of wall panels

Prior to the development of a predictive model, data 
preprocessing was implemented. Timestamps of wall 
panels prefabrication that started on one day and finished 
on the following day were removed, and wall panels with 
missing timestamps were also discarded from the dataset. 
Additionally, similar properties of a panel were 
combined into a single attribute in order to reduce data 
dimensions. For example, DStud, LStud, and MStud 
were combined into a 'stud'; similarly, window and large 
widow were combined as a 'window.'

Later the outliers were removed based on data 
visualization (i.e., pie chart), which helps to visualize the 
distribution of data points that are inconsistent from the 
data set. For example, at butterfly (i.e., cutting 
workstation), the process times above 60 minutes were 
removed (Figure 3). The reason for removing these 
points is that around 4% of the wall panel's processing
times have excessive times (i.e., 61-410000 minutes). 
Such data points indicated a work disruption due to errors 
in the shop drawings and resulted from their waiting 
between the workstations. In addition, data points above 
and below 'Mean ± 1.5 SD' are data points marked as 
possible statistical outliers. As a result of the 
preprocessing tasks, the datasets numbered 7256, 2885,
3035, 19998, 1868, 4101, and 1592 for the framing, 
sheathing, nailing, cutting, window door, window bypass, 
transfer table, and storage area workstations, respectively.

Figure 3. Pie chart
Next, the min-max normalization technique was 

applied in order to transform values ranging between 0 

and 1. As described above, the variation in the process 
times at workstations due to differences in design factors 
of wall panels leads to an imbalanced production line. In 
this respect, the next critical step in the case study was to 
develop a predictive model by considering the wall panel 
design factors.

The developed deep neural network consists of input, 
hidden, and output layers. The independent variables,
such as panel length, number of regular studs, number of 
doors, and number of windows, were used as model 
inputs, while the process times of wall panels in minutes 
were the output variable. Each node element was 
connected and layered with nodes of the next layer. The 
nodes, which carry weights, were used to process the 
error rate. In this paper, the rectifier activation function 
was selected, and the range searched for upper 
bound/lower bound was 3-10 for hidden layers and 6-100 
for the number of nodes.

In order to identify the optimal number of hidden 
layers and nodes, a GA optimization algorithm was 
selected to minimize the MAE. In this paper, the 
optimization parameters were assigned as follows: (i)
population size of 20; (ii) the maximum number of 
generations was 50; (iii) mutation probability of 0.1; (iv)
crossover probability of 1 and: (v) number of 
tournaments were 3. As observed in table 1, most of the
workstations (i.e., framing, sheathing, and nailing station) 
had MAE of less than 2.50 minutes, respectively.

Table 1. Selected values of the predictive model 
Workstations Selected Value MAE

Hidden Nodes
Framing 3 74 2.17 min

Sheathing 3 72 2.11 min
Nailing 3 14 2.41 min

Butterfly (cutting) 7 70 5.37 min
Window/Door 8 42 30.36 min

Window Bypass 3 86 20.16 min
Transfer Table 9 24 1.11 min



Later the predictive process times were used as input 
in the optimization model. A genetic algorithm was 
developed with an objective of minimizing the makespan 
(i.e., production duration) of prefabricating the wall 
panels in the production line. The number of wall panels 
considered for this optimization model are 46 (i.e., 27 
exteriors and 19 interiors) to be processed at 7 
workstations, respectively. The optimization parameters
used in this case study are as follows: 100 generations, 
each generation containing 30 populations with mutation
and crossover rates of 0.2 and 0.8. Figure 4 shows that 
the Makespan value (i.e., duration) plateaued after 85 
generations. The algorithm starts with an initial solution 
of a makespan equal to 4359 minutes, and the algorithm 
converges to the best solution in 90 generations with a 
makespan equal to 4352 minutes.

Figure 4. Makespan value

The median makespan to prefabricate 46 wall panels 
is 4352 min (i.e., 72.32 hours ~ 7 days (10 hours/day
working time for the factory). The optimal sequence is:
9,16,25,14,23,10,44,42,27,5,45,36,26,28,11,13,31,22,29
,18,39,38,43,6,22,40,30,2,4,17,12,33,8,34,15,32,41,7,1,
4,2,21,3,19,35,37, where the wall panel number 9 is the 
first panel to be prefabricated at the first station (i.e., 
framing) followed by 16 and so on. The approach 
presented in this paper unleashes the potential of a data 
driven scheduling method, which overcomes the 
drawbacks of previous studies with respect to: (i) testing 
limited number of scenarios for sequencing module 
components, thus not providing near optimal solution and; 
(ii) assuming the durations on a production line as only
triangular distribution or based on number of workers
allocated to the activities.

5. Conclusions and Future Work
In modular construction, the module components (e.g., 
wall, roof, and floor panels) are of various sizes and 
design specifications, necessitating dynamic changes to
the production line. This poses a challenge for production 
line managers to accurately forecast the process times of 
module components at each workstation, leading to 
inefficient production line schedules and reduced 

productivity. In this respect, this research proposes a 
newly developed method that utilizes deep neural 
network and GA in order to solve the MCMSP. The 
developed method utilizes the historical time data
collected from the manufacturing plant at each 
workstation as an input in the deep neural network model 
to predict the process times at these workstations. Next, 
the GA optimization technique is implemented for 
hyperparameter tuning and, as such, finds the optimal 
number of hidden layers and a number of nodes in each 
layer. Subsequently, the predicted process times are used 
as an input in the scheduling optimization model in order 
to provide optimal sequence of module components to 
minimize the makespan. The case study implementation 
of the developed method in a wall panel production line 
demonstrates that the developed method predicted the 
process times with a MAE of less than 2.50 minutes for 
most of the workstations. In particular, the optimal 
sequences of 46 wall panels are prefabricated in 72.32 
hours. As illustrated by the case study, this method can 
be helpful in assisting production managers to understand 
the insights of the production line by: (i) predicting 
process times for various types of module components; 
and (ii) analysing variance in the process times at 
workstations due to the influence of the module 
components design factors. In this way, production line 
managers can reduce duration of prefabricating module 
components at workstations and don’t need to rely on 
experienced based approach with respect to estimating 
the process times and developing schedules.

However, the developed method does have 
limitations in the following respect: (i) other factors 
important to develop schedules for production line 
besides duration, (e.g., minimization of the idle time at 
workstations and allocation of optimal number of 
workers at workstations), are not taken into consideration 
in the current method; and (ii) the number of module 
components considered for this optimization model are 
not based on multiple projects. Therefore, in order to 
improve the current method, the future work will seek to 
expand in the following directions: (i) optimization 
model will consider module components (e.g., wall 
panels) based on multi-projects to achieve JIT lean 
strategy; (ii) the optimization model can be further 
improved by applying hybrid optimization techniques; 
and (iii) multi-objective optimization of production line 
schedules with respect to cost and workers will be 
explored. It should be noted that this paper focused 
primarily on developing production line schedule with an 
objective of minimizing duration, which is an essential
factor while solving sequencing problems for production 
line. However, consideration of quality of work can also 
be incorporated into future works by measuring the 
percentage of rework for prefabricating module
components at workstations.
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